Description |
PI(3, 4, 5)P3 diC8 (Phosphatidylinositol 3, 4, 5-trisphosphate diC8) is a synthetic, purified dioctanoyl PI(3, 4, 5)P3. Phosphoinositides (PIPns) are minor components of cellular membranes but are integral signaling molecules for cellular communication. Phosphatidylinositol 3, 4, 5-trisphosphate (PIP3), formed from PI(4, 5)P2 though phosphorylation by PI 3-kinase, activates numerous signaling pathways resulting in cell proliferation, growth, survival, glucose transport and protein synthesis. High PIP3 levels from disregulation of PI3-K have been demonstrated in cancer and inflammatory diseases. PIP3 is hydrolyzed by the phosphatases PTEN to PI(4, 5)P2 and SHIP to PI(3, 4)P2. <hr /> <b>Product Keywords: </b>Dioctanoyl Phosphatidylinositol 3, 4, 5-trisphosphate, PtdIns(3, 4, 5)P3 (8:0/8:0), PI(3, 4, 5)P3 C8, or PIP3 Bulk discounts available, please email <a href="mailto:echelon@echelon-inc.com?subject=Bulk">echelon@echelon-inc.com</a> for information. <h4>Publications</h4> <object id="wobj-318-p-3908" style="width: 100%; height: 96px; background-color: [rgb color];" data="https://www.bioz.com/v_widget_2_5/318/p-3908" type="text/html" width="300" height="150"></object> <div id="bioz-w-pb-p-3908-div" style="width: 100%; display: none;"><a id="bioz-w-pb-p-3908" style="font-size: 12px; text-decoration: none; color: transparent;" href="https://www.bioz.com/" target="_blank" rel="noopener noreferrer"><img style="width: 11px; height: 11px; vertical-align: baseline; padding-bottom: 0px; margin-left: 0px; margin-bottom: 0px; float: none; display: none;" src="https://cdn.bioz.com/assets/favicon.png" /> Powered by Bioz</a><a style="font-size: 12px; text-decoration: none; float: right; color: transparent;" href="https://www.bioz.com/result/p-3908/product/Echelon Biosciences/?cn=p-3908" target="_blank" rel="noopener noreferrer"> See more details on Bioz</a></div> 1. <a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16302969">Paternotte, N., J. Zhang, et al. (2005). "SHIP2 interaction with the cytoskeletal protein Vinexin." FEBS J 272(23): 6052-66.</a> 2. <a href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17565999">Odriozola, L., G. Singh, et al. (2007). "Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain." J Biol Chem 282(32): 23306-15.</a> 3. <a href="http://www.ncbi.nlm.nih.gov/pubmed/21527775?dopt=Citation">Hubbard, L. L., C. A. Wilke, et al. (2011). "PTEN Limits Alveolar Macrophage Function Against Pseudomonas aeruginosa Following Bone Marrow Transplantation." Am J Respir Cell Mol Biol 45(5): 1050-1058.</a> 4. <a href="http://www.jbc.org/content/291/13/6772">Steidle, E. A., et al. (2016). "A novel inositol pyrophosphate phosphatase in Saccharomyces cerevisiae: Siw14 selectively cleaves the β-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5)." J. Biol. Chem. 291: 6772-6783.</a> 5. <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0182308">Somasundaram, R., et al. (2017). "Analysis of SHIP1 expression and activity in Crohn’s disease patients." PLoS ONE 12(8): e0182308.</a> 6. <a href="https://doi.org/10.1038/s41467-018-07812-8">Patel, V. B., et al. (2018). "PI3Kα-regulated gelsolin activity is a critical determinant of cardiac cytoskeletal remodeling and heart disease." Nature Communications 9(1): 5390.</a> |